ION-EXCHANGE PROCEDURES

VIII. SEPARATION OF SILVER FROM A NUMBER OF ELEMENTS BY PARTITION CHROMATOGRAPHY*,**

FREDERICK NELSON

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tenn. (U.S.A.) (Received April 5th, 1965)

HANDLEY AND DEAN² reported that trialkyl thiophosphates, e.g. tri-iso-octyl thiophosphate (TOTP) and tri-n-butyl thiophosphate (TBTP) are particularly selective extractants for Ag(I) and Hg(II) in HNO_3 solutions. Of some 35 elements tested in HNO_3 solutions, only Ag(I) and Hg(II) were significantly extracted by these reagents. As a typical example of the selectivity of these compounds, HANDLEY AND DEAN² isolated Ag(I) from a fission product mixture by batch extraction. WISH AND FOTI³ also used one of the reagents (TOTP) for separating tracer Ag(I) from Cd(II) and Rh(III).

It would appear that partition chromatography, wherein the extracting agent is held on a suitable supporting material in a column, should give even better separation of Ag(I) and Hg(II) from other elements than batch extraction since partition. chromatography is a multiplate technique. Separations of this type have received increasing attention in recent years particularly since a variety of new water-insoluble extracting agents have become available; the field was recently reviewed by CERRAI⁴.

In this paper, adsorption behavior of Ag(I) on small columns of supporting materials impregnated with a tri-iso-octyl thiophosphate (TOTP)--CCl₄ solution is described and a procedure is presented for separating Ag(I) from many non-extractable elements. Although the method does not involve ion exchange, it is included in the present series of procedures because partition chromatography is a related technique. Also, in a separation scheme under development at this laboratory, a method was needed for separating Ag(I) from certain elements e.g. the alkali metals, Be, Mg, Ba, Ra, V, Cr, Mn, Ni, Cu, Al, In, Rh and Pb. Except for silver, this group of elements can be separated into smaller subgroups by an anion-exchange procedure⁵ employing citrate solutions. In the citrate media used, silver precipitates as an insoluble Ag(I) citrate if present at appreciable concentration and behaves erratically when present at tracer concentrations, presumably because it adsorbs irreversibly on the surfaces of containers. The present procedure permits separation of macro or tracer Ag(I) from the elements of interest prior to carrying out separations in citrate media.

^{*} Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation. ** For Part VII see ref. 1.

J. Chromatog., 20 (1965) 378-383

EXPERIMENTAL

The tri-iso-octyl thiophosphate (TOTP)* was purified by diluting the reagent approximately four-fold with CCl₄ and passing the resulting solution through a column of Fisher Chromatographic grade alumina as described by HANDLEY AND DEAN². The pure reagent has a density of 0.934 g/ml and contains 2.23 moles TOTP per l. A 0.5 MTOTP solution (22 vol. % TOTP) in CCl_4 was used for distribution and separation experiments.

Of the materials tested as supports for the organic phase, microporous polyethylene (30-40 mesh)** and a polyfluorocarbon, "Fluoropak" (20-80 mesh)*** seemed promising. The latter is marketed as a support for gas-liquid chromatographic applications. Small columns were prepared from sections of 1/4 in. (i.d.) polyethylene tubing about 6 in. in length. The tubing was heated, pulled to a tip on one end and a porous "Teflon" plug inserted to retain the finely divided support. The dry supports were tamped in the columns in layers 2 to 3 mm deep to form uniformly-packed beds I cm in length.

The dry beds were "wetted" with 0.5 M TOTP in CCl₄ and centrifuged 5 min to remove excess liquid. The amount of organic solvent retained by the beds was determined from the difference in weight of the dry columns and the weight of the "wetted", centrifuged columns.

Distribution coefficients, D_v (amount of Ag(I) per liter bed/amount of Ag(I) per liter solution), were determined by the band elution method. The columns were pretreated with appropriate HNO₃ solutions and small aliquots containing ¹¹⁰Ag tracer in HNO₃ solution added. Elution was continued with the same HNO₃ solution used in pretreating the columns. The number of column volumes (c.v.) of effluent at which ¹¹⁰Ag appeared in maximum concentration is numerically equal to D_v , after subtraction of the fractional interstitial volume of the columns. The latter depended on the degree of compaction of the support. The peak position of a typical non-adsorbed element, Cs(I), usually appeared in the region 0.1-0.3 c.v., and hence an average fractional void volume of 0.2 c.v. was assumed in computing D_v values.

Liquid-liquid extraction coefficients for Ag(I), E_v (amount per liter organic phase/amount per liter aqueous phase), were measured by equilibrating equal volumes of 0.5 M TOTP in CCl_4 and aqueous HNO₃ solutions containing ¹¹⁰Ag tracer. The organic and aqueous phases were analysed radiometrically for ¹¹⁰Ag and E_v was computed from these data. Most measurements were carried out at 25°; for those at 60° the solutions were equilibrated and sampled in a bath of controlled temperature.

Column separations were carried out with samples containing radioisotopes of the elements of interest in HNO₃ solution, and the effluent fractions were analysed radiometrically. For those elements for which tracers were not conveniently available (Li(I), Mg(II) and Al(III)) appropriate spot tests were carried out on the effluent fractions to establish elution behavior.

Most measurements of D_v and separations were carried out at 60°. Temperature was controlled by placing the columns in a water jacket through which thermostated • water was pumped.

J. Chromatog., 20 (1965) 378-383

^{*} From Peninsular Chem. Research Inc., Gainesville, Florida.

^{**} From E. S. B. Reeves Co., Glenside, Pennsylvania.

^{***} From Wilkens Instrument and Research, Inc., Walnut Creek, California.

RESULTS AND DISCUSSION

(a) Extraction coefficients, E_v

The extraction coefficient, E_v , for tracer Ag(I) in 0.25 to 8 M HNO₃ was measured by batch extraction with 0.5 M TOTP in CCl₄. For 0.25, 1.0, 4 and 8 MHNO₃, E_v was 1, 2, 24 and 840 respectively, at 25°. With 4 M HNO₃ at 60° E_v was 9, *i.e.* extractability of Ag(I) decreases with increasing temperature at this HNO₃ concentration.

The extraction coefficients we observe for tracer Ag(I) are slightly higher than those reported by HANDLEY AND DEAN² for ca. 0.1 M AgNO₃ in HNO₃ solutions. However, our values of E_v at low M HNO₃ disagree by orders of magnitude with the results of WISH AND FOTI³, who observed $E_v > 10^2$ with 20 % TOTP-80 % CCl₄ solutions and tracer Ag(I) in 1-3 M HNO₃ solutions. Since WISH AND FOTI did not purify the TOTP they used, the difference between our measurements and theirs may be caused by impurities in their reagent.

(b) Support

The choice of support for the solvent is important in partition chromatography; some of the organic and inorganic materials used and methods of impregnating the support with extracting agents are described by CERRAI⁴. Since Ag(I) at tracer concentrations would be less likely to adsorb irreversibly on certain organic supports than on porous inorganic materials, *e.g.* diatomaceous earth, fire brick, etc., only high non-reactive organic supports were tested such as porous polyethylene and a polyfluoro-carbon, "Fluoropak". These materials have a fairly large adsorptive capacity for TOTP-CCl₄ solution (0.2 to 0.3 ml/ml bed) and are resistant to attack by HNO₃. Presumably other similar materials such as finely-divided "Kel-F"^{6,7} or "Corvic", a poly-(vinyl chloride-vinyl acetate) polymer⁸, could have been used.

Columns prepared from "Fluoropak" and porous polyethylene contained I.I and 0.I5 g of dry support per ml bed, respectively, when compacted. In preparing the relatively small columns, it was important to compact the supports firmly. With loosely compacted columns or columns prepared by settling the material by gravity, erratic elution behavior resulted, presumably because of channelling.

Preliminary column experiments showed that elution bands for Ag(I) were extremely broad and tailed at 25° with both the "Fluoropak" and porous polyethylene supports which contained *ca.* 0.25 ml of 0.5 *M* TOTP per ml bed; no significant improvement resulted when a finer fraction (60–80 mesh) of the Fluoropak support was used. Elution kinetics was also unsatisfactory with more concentrated solutions (0.1 *M* Ag(I)). At 60°, however, the elution bands of Ag(I) were considerably sharper with both supports, presumably because of increased rates of diffusion of the Ag(I) species. Sharper elution bands and minimum tailing might be expected at even higher temperatures, but troublesome gas bubbles formed in the columns at temperatures above 60°, particularly at high HNO₃ concentrations. Hence most measurements of D_v and separations were carried out at 60°.

(c) Distribution coefficients, D_v

Typical distribution data for tracer Ag(I) are shown in Fig. 1, a semilog plot of $D_v vs. M$ HNO₃. The data were obtained at 60° by the band elution method with

a small column of 20-80 mesh "Fluoropak" impregnated with 0.5 M TOTP in CCl₄ (0.26 ml/ml of bed). As shown in Fig. 1, D_v of Ag(I) increases rapidly with increasing HNO₃ concentration from $D_v = 0.6$ near 1 M HNO₃ to $D_v = 15$ near 6 M HNO₃. Similar results were found with porous polyethylene columns loaded with organic solvent approximately to the same extent. With "Fluoropak" however, the elution bands usually tailed less severely and the columns did not gas as badly and hence this material seemed preferable.

Fig. 1. Adsorption of tracer Ag(I) from aqueous HNO_3 solutions (0.5 M TOTP on "Fluoropak", 60°).

Where comparison can be made, distribution coefficients of Ag(I) agree with batch extraction data. At 4 M HNO₃ and 60° , $D_v = 2.1$ (Fig. 1); this value corresponds to an extraction coefficient, $E_v = 8.1$, when correction is made for the volume fraction of solvent in the column (0.26). The extraction coefficient at the same HNO₃ concentration and temperature was found to be 9.0. The difference is within experimental error.

(d) Typical separations

Separation of Ag(I) at "macro" concentration (0.1 M) can be achieved with small columns of TOTP on porous polyethylene or "Fluoropak". In a typical experiment, 0.1 ml of 0.1 M AgNO₃-8 M HNO₃ solution containing ¹¹⁰Ag and ¹³⁴Cs tracers was added to a "Fluoropak" column containing 0.25 ml of 0.5 M TOTP in CCl₄ and which had been pretreated with 8 M HNO₃. On elution with 8 M HNO₃, ¹³⁴Cs was eluted in a sharp band with peak concentration near 0.2 c.v. Then Ag(I) was removed with 1 M HNO₃, a medium in which its extractability is low.

A typical column separation of Ag(I) from a number of non-adsorbed elements is shown in Fig. 2. The sample composition was: ¹¹⁰Ag(I), 0.01 M LiNO₃, ²²Na(I), ⁴²K(I), ⁸⁶Rb(I), ¹³⁴Cs(I), ⁷Be(II), 0.005 M Mg(NO₃)₂, ¹³³Ba(II), ²²⁶Ra(II), ⁴⁹V(IV), ⁵¹Cr(III), ⁵⁴Mn(II), ⁶⁵Ni(II), ⁶⁴Cu, 0.005 M Al(NO₃)₃, ¹¹⁴In(III), ¹⁰²Rh(III) and ²¹⁰Pb(II) in 8 M HNO₃. The tracers were all less than 10⁻⁴ M in metal ion. The sample also contained decay products of ²²⁶Ra and ²¹⁰Pb. A 0.32 cm² × I cm column of "Fluoropak" containing 0.25 ml of 0.5 M TOTP in CCl₄ per ml bed was pretreated with *ca*. 4 c.v. of 8 M HNO₃ and 0.2 ml of the sample added. The column was operated at 60°; on elution with 8 M HNO₃, all elements except Ag(I) appeared in the effluent in a sharp band and were completely removed in the first 5 c.v. of effluent. On treatment of the column with I M HNO₃, Ag(I) was removed in a band which tailed somewhat; however, *ca*. 99% of the Ag(I) was removed

Fig. 2. Separation of Ag(I) from a number of elements by partition chromatography (0.32 cm² \times 1 cm column, 0.5 *M* TOTP on "Fluoropak", 60°).

with 5 c.v. of IM HNO₃. To obtain satisfactory recovery of Ag(I), it is essential that the separation be carried out at elevated temperatures, at least with the supports used in these studies. When separation was repeated at 25°, the non-adsorbed elements were eluted quantitatively in a sharp band with 8 M HNO₃ but only ca. 85% of the Ag(I) was removed with 5 c.v. of IM HNO₃.

PROCEDURE

(a) Materials and reagents

Apparatus. A section of plastic tubing, 0.64 cm i.d. and 12 cm in length, is used to prepare the column. The tubing is warmed, pulled to a tip at one end and a porous "Teflon" plug inserted to retain support. Other apparatus are plastic test tubes, plastic transfer pipets, "Teflon" evaporating dishes and syringes.

Support. "Fluoropak": 20-80 mesh.

Extracting agent. A 0.5 M tri-iso-octyl thiophosphate (TOTP) solution is prepared by dilution of TOTP (2.23 M) with reagent grade CCl_4 . Impurities are removed by passing the solution through a column of Fisher chromatographic grade alumina.

Column preparation. The dry support, 20-80 mesh "Fluoropak", is packed in the column in layers 2-3 mm deep until a compact bed I cm in length is formed. A cylindrical glass rod, 0.6 cm in diameter, is convenient for compacting the support. The bed is "wetted" with TOTP solution and centrifuged 5 min to remove excess solvent.

Eluents. 8 M HNO₃, I M HNO₃.

J. Chromatog., 20 (1965) 378-383

(b) Sample preparation

The sample containing Ag(I) and non-adsorbable elements in HNO₃ solution is evaporated to near-dryness in a Teflon evaporating dish and taken up ir 0.2 ml of $8 M HNO_3$.

(c) Column operation

The column of TOTP solution on "Fluoropak" is placed in a water jacket at 60°, pretreated with 4 c.v. of 8 M HNO₃, and the sample added. Flow rate is controlled by air pressure to about 0.5 cm/min. Elution is continued with 5 c.v. (1.6 ml) of 8 M HNO_3 . This elutes the non-adsorbed elements. The column is then treated with 5 c.v. of $I M HNO_3$ (1.6 ml) to remove the Ag(I).

The column may be regenerated by treating it with 8 M HNO₃. However, since the Ag(I) tails and about I % of the Ag(I) is usually retained by the column in this procedure, a new column should be used for each separation. The column should not be allowed to remain in contact with 8 M HNO₃ for prolonged periods of time since TOTP is slowly decomposed by strong HNO₃ solutions.

The total column operation time is about 25 min.

ACKNOWLEDGEMENTS

The author is indebted to Mr. J. CSURNY and Mrs. D. C. MICHELSON for carrying out some of the experimental work, to Dr. K. A. KRAUS for helpful comments and to Mr. T. H. HANDLEY of the ORNL Analytical Division for kindly supplying the purified TOTP.

SUMMARY

A procedure is described for separating silver from a number of elements by partition chromatography in nitric acid solutions. A small column of a finely divided polyfluorocarbon impregnated with a highly selective extractant for Ag(I) (tri isooctyl thiophosphate in carbon tetrachloride) is used to effect separation.

REFERENCES

- I F. NELSON, D. C. MICHELSON, H. O. PHILLIPS AND K. A. KRAUS, J. Chromatog., 20 (1965) 107.
- 2 T. H. HANDLEY AND J. A. DEAN, Anal. Chem., 32 (1960) 1878.
- 3 L. WISH AND S. C. FOTI, Anal. Chem., 36 (1964) 1071.
- 4 E. CERRAI, in M. LEDERER (Editor), Chromatographic Reviews, Vol. 6, Elsevier, Amsterdam, 1964, p. 129.
- 5 F. NELSON AND E. L. LIND, to be published. 6 T. J. HAYES AND A. G. HAMLIN, Analyst, 87 (1962) 770.
- 7 A. G. HAMLIN, B. J. ROBERTS, W. LOUGHLIN AND S. G. WALKER, Anal. Chem., 33 (1961) 1547. ST. B. PIERCE AND R. S. HOBBS, J. Chromatog., 12 (1963) 74; T. B. PIERCE AND P. F. PECK, Nature, 195 (1962) 597.

J. Chromatog., 20 (1965) 378-383